185 research outputs found

    The use of fuzzy control methods for evaluation of complex systems on the example of maritime fleet equipment

    Get PDF
    At present, the interest in application of synchronous machines in the various systems of the electric drive and energy sources is still growing. Synchronous motors and their modifications enable to develop low-noise, reliable and economically efficient electric drive systems. They provide high maneuverability when using a propeller power plant of the submersible vehicles and the World fleet vessels. Synchronous generators are the major energy sources in the electric power systems of the variety autonomous plants: on vessels, offshore and coastal oil rigs, etc

    Algorithmic approach of destabilizing factors of improving the technical systems efficiency

    Get PDF
    In work, the questions of stabilization of factors of reliability of operation of the ship equipment are considered. According to the Navy Register rules, ship electrical power system voltage fluctuations within ±10 % of the nominal voltage are admissible if not lasting longer than 5 seconds; longer fluctuations are admissible if they are within ±5 % of the nominal voltage. The work of the engine with loads is presented. The algorithm for parameter optimization was applied. The calculation is performed on real parameters

    Measurement of the linear thermo-optical coefficient of Ga0.51_{0.51}In0.49_{0.49}P using photonic crystal nanocavities

    Full text link
    Ga0.51_{0.51}In0.49_{0.49}P is a promising candidate for thermally tunable nanophotonic devices due to its low thermal conductivity. In this work we study its thermo-optical response. We obtain the linear thermo-optical coefficient dn/dT=2.0±0.3⋅10−4 K−1dn/dT=2.0\pm0.3\cdot 10^{-4}\,\rm{K}^{-1} by investigating the transmission properties of a single mode-gap photonic crystal nanocavity.Comment: 7 pages, 4 figure

    Tuning out disorder-induced localization in nanophotonic cavity arrays

    Get PDF
    Weakly coupled high-Q nanophotonic cavities are building blocks of slow-light waveguides and other nanophotonic devices. Their functionality critically depends on tuning as resonance frequencies should stay within the bandwidth of the device. Unavoidable disorder leads to random frequency shifts which cause localization of the light in single cavities. We present a new method to finely tune individual resonances of light in a system of coupled nanocavities. We use holographic laser-induced heating and address thermal crosstalk between nanocavities using a response matrix approach. As a main result we observe a simultaneous anticrossing of 3 nanophotonic resonances, which were initially split by disorder.Comment: 11 page

    Dispersion of coupled mode-gap cavities

    Get PDF
    The dispersion of a CROW made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the fact that the cavity mode profile itself is dispersive, i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. By taking into account the dispersive mode profile, we formulate a mode coupling model that accurately describes the asymmetric dispersion without introducing any new free parameters.Comment: 4 pages, 4 figure

    AB Initio Calculations of CU N @Graphene (0001) Nanostructures for Electrocatalytic Applications

    Get PDF
    Funding from European Union’s Horizon 2020 Research and Innovation Programme project under grant agreement No. 768789 is greatly acknowledged.Substitution of fossil-based chemical processes by the combination of electrochemical reactions driven by sources of renewable energy and parallel use of H 2 O and CO 2 to produce carbon and hydrogen, respectively, can serve as direct synthesis of bulk chemicals and fuels. We plan to design and develop a prototype of electrochemical reactor combining cathodic CO 2 -reduction to ethylene and anodic H 2 O oxidation to hydrogen peroxide. We perform ab initio calculations on the atomistic 2D graphene-based models with attached Cu atoms foreseen for dissociation of CO 2 and H 2 O containing complexes, electronic properties of which are described taking into account elemental electrocatalytical reaction steps. The applicability of the model nanostructures for computer simulation on electrical conductivity of charged Cu n /graphene (0001) surface is also reported.Horizon 2020 Framework Programme 768789; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
    • …
    corecore